Just in:
Crypto Market Poised for Boom as Baby Boomers Embrace Bitcoin ETFs // TPBank and Backbase Clinch ‘Best Omni-Channel Digital CX Solution’ at the Digital CX Awards 2024 // China Sets Sights on Lunar Riches with Chang’e 6 Launch // World Intellectual Property Day: OPPO Maintains Top 10 Global IP Ranking for Fifth Consecutive Year // Oman Seeks Growth Through Strategic Economic Alliances // Downpours in Oman and UAE Likely Amplified by Warming Planet // e& UAE Unveils Strategic Roadmap // Nano-Care Deutschland AG launches next generation of sustainable PFAS-free oleophobic coatings // Galaxy Macau’s Sakura Cultural Festival Kicked off in Splendor // “Hello China, Sunshine Hainan” International Media Tour witnessed the evolution of Hainan’s tourism and culture // Abu Dhabi Unveils Online Portal to Strengthen Healthcare Workforce // Saudi Arabia on Verge of Sending First Delegate to Miss Universe // VARA Introduces Thai-Inspired Corporate Catering Menu in Seattle, Washington // Election Commission Of India Degrades Itself To Modi’s Own Commission // AVPN Charts Path Forward at 2024 Global Conference // Supreme Court dismisses pleas for 100% VVPAT verification // Winner of Hong Kong’s Flagship Global Elevator Pitch Competition Crowned // GE Jun, Chairman and CEO of TOJOY, Delivers an Inspiring Speech: “Leaping Ahead Again” // Heavy Rainfall Disrupts UAE Construction Boom // Liverpool FC continues international growth with first official retail partnership in South Korea //

3-D-printed, soft, four legged robot can walk on sand and stone

1494968311 3dprintedsof

Engineers at the University of California San Diego have developed the first soft robot that is capable of walking on rough surfaces, such as sand and pebbles. The 3-D-printed, four-legged robot can climb over obstacles and walk on different terrains. Credit: Jacobs School of Engineering/UC San Diego

Engineers at the University of California San Diego have developed the first soft robot that is capable of walking on rough surfaces, such as sand and pebbles. The 3D-printed, four-legged robot can climb over obstacles and walk on different terrains.


Researchers led by Michael Tolley, a mechanical engineering professor at the University of California San Diego, will present the at the IEEE International Conference on Robotics and Automation from May 29 to June 3 in Singapore. The robot could be used to capture sensor readings in dangerous environments or for search and rescue.

ADVERTISEMENT

The breakthrough was possible thanks to a high-end printer that allowed researchers to print soft and rigid materials together within the same components. This made it possible for researchers to design more complex shapes for the robot’s legs.

Bringing together soft and rigid materials will help create a new generation of fast, agile robots that are more adaptable than their predecessors and can safely work side by side with humans, said Tolley. The idea of blending soft and hard materials into the robot’s body came from nature, he added. “In nature, complexity has a very low cost,” Tolley said. “Using new manufacturing techniques like 3D printing, we’re trying to translate this to robotics.”

ADVERTISEMENT
Engineers at the University of California San Diego have developed the first soft robot that is capable of walking on rough surfaces, such as sand and pebbles. The 3-D-printed, four-legged robot can climb over obstacles and walk on different terrains. Credit: Jacobs School of Engineering/UC San Diego

3-D printing soft and rigid robots rather than relying on molds to manufacture them is much cheaper and faster, Tolley pointed out. So far, soft robots have only been able to shuffle or crawl on the ground without being able to lift their legs. This robot is actually able to walk.

Researchers successfully tested the tethered robot on large rocks, inclined surfaces and sand (see video). The robot also was able to transition from walking to crawling into an increasingly confined space, much like a cat wiggling into a crawl space.

Dylan Drotman, a Ph.D. student at the Jacobs School of Engineering at UC San Diego, led the effort to design the legs and the robot’s control systems. He also developed models to predict how the robot would move, which he then compared to how the robot actually behaved in a real-life environment.

The breakthrough was possible thanks to a high-end printer that allowed researchers to print soft and rigid materials together within the same components. This made it possible for researchers to design more complex shapes for the robot’s legs. The legs are made up of three parallel, connected sealed inflatable chambers, or actuators, 3-D-printed from a rubber-like material. The chambers are hollow on the inside, so they can be inflated. On the outside, the chambers are bellowed, which allows engineers to better control the legs’ movements. For example, when one chamber is inflated and the other two aren’t, the leg bends. The legs are laid out in the shape of an X and connected to a rigid body. Credit: Jacobs School of Engineering/UC San Diego

How it’s made

The legs are made up of three parallel, connected sealed inflatable chambers, or actuators, 3D-printed from a rubber-like material. The chambers are hollow on the inside, so they can be inflated. On the outside, the chambers are bellowed, which allows engineers to better control the legs’ movements. For example, when one chamber is inflated and the other two aren’t, the leg bends. The legs are laid out in the shape of an X and connected to a rigid body.

The robot’s gait depends on the order of the timing, the amount of pressure and the order in which the pistons in its four are inflated. The robot’s walking behavior in real life also closely matched the researcher’s predictions. This will allow engineers to make better educated decisions when designing .

The current quadruped robot prototype is tethered to an open source board and an air pump. Researchers are now working on miniaturizing both the board and the pump so that the robot can walk independently. The challenge here is to find the right design for the board and the right components, such as power sources and batteries, Tolley said.

The video will load shortly


Explore further:
3-D-printed robot is hard at heart, soft on the outside (w/ Video)

More information:
Drotman D., Jadhav S., Karimi M., deZonia P., Tolley M. T., (2017) “3D Printed Soft Actuators for a Legged Robot Capable of Navigating Unstructured Terrain”, Int. Conf. on Robotics and Automation (ICRA), Singapore, May 2017.

Source link

ADVERTISEMENT

ADVERTISEMENT
Just in:
GE Jun, Chairman and CEO of TOJOY, Delivers an Inspiring Speech: “Leaping Ahead Again” // Nano-Care Deutschland AG launches next generation of sustainable PFAS-free oleophobic coatings // TPBank and Backbase Clinch ‘Best Omni-Channel Digital CX Solution’ at the Digital CX Awards 2024 // Winner of Hong Kong’s Flagship Global Elevator Pitch Competition Crowned // VARA Introduces Thai-Inspired Corporate Catering Menu in Seattle, Washington // MENA Debt Surge Raises Concerns for Global Economic Stability // Andertoons by Mark Anderson for Fri, 26 Apr 2024 // Saudi Arabia on Verge of Sending First Delegate to Miss Universe // CapBridge Shares Insights on the Recent Launch of Digital Asset ETFs in Hong Kong // Election Commission Of India Degrades Itself To Modi’s Own Commission // World Intellectual Property Day: OPPO Maintains Top 10 Global IP Ranking for Fifth Consecutive Year // Forward Fashion’s Artelli Presents: Nobuyoshi Araki’s “Paradise” Starting from April 27th, at K11 MUSEA // Supreme Court dismisses pleas for 100% VVPAT verification // Heavy Rainfall Disrupts UAE Construction Boom // Galaxy Macau’s Sakura Cultural Festival Kicked off in Splendor // Oman Seeks Growth Through Strategic Economic Alliances // ByteDance Eyes US Shutdown for TikTok // AVPN Charts Path Forward at 2024 Global Conference // e& UAE Unveils Strategic Roadmap // “Hello China, Sunshine Hainan” International Media Tour witnessed the evolution of Hainan’s tourism and culture //