Just in:
Hong Kong Unveils April 30 Launch for Landmark Crypto ETFs // Election Commission Has A Dismal Record On Acting Against Modi’s Breaches Of Poll Code // UAE President, Spanish Prime Minister Hold Phone Talks // Leading with Compliance, ZUHYX Earns the Canadian MSB License // ZUHYX Exchange: Embracing Social Responsibility for a Sustainable Future // Telecom Giant Du Eyes Crypto Integration for FinTech Platform // Astana International Exchange Connects with Regional Markets Through Tabadul Hub // AVPN Charts Path Forward at 2024 Global Conference // Abu Dhabi Secures US$5 Billion in Fresh Funding // Lee Chong Wei Shows Up On Chinese Hot cultural Talk Show “SHEDE Wisdom Talents”, Talking About “Crossing The Hill” // Dubai Gears Up for Second FinTech Summit as Funding Surges // New Dynamics in Cryptocurrency Security: ZUHYX Builds the Strongest Fund Protection System // NetApp’s 2024 Cloud Complexity Report Reveals AI Disrupt or Die Era Unfolding Globally // Prince Holding Group’s Chen Zhi Scholarship Clinches Silver Stevie for CSR Excellence at Asia-Pacific Stevie Awards // Galaxy Macau’s Sakura Cultural Festival Kicked off in Splendor // ESG Achievement Awards 2023/2024 is Open for Application, Celebrating Innovative Sustainable Practices and Responsible Risk Management // Quality HealthCare Partners with eHealth to Enhance Patient Treatment Efficiency // Lai & Turner Law Firm PLLC Welcomes Eric Strocen as Director of Family Law Division // Andertoons by Mark Anderson for Thu, 25 Apr 2024 // PolyU forms global partnership with ZEISS Vision Care to expand impact and accelerate market penetration of patented myopia control technology //

artificial biofilm increases energy production in microbial fuel cells

1492924429 betterthanna

A confocal microscopic image of wet spun microfibres with Shewanella oneidensis bacteria (green: living bacteria; red: dead bacteria). Credit: Patrick Kaiser

Microbial fuel cells exploit the metabolism of bacteria in order to generate electricity. A new type of biofilm developed in Bayreuth could soon make this relatively young technology considerably more effective, more stable, and easier to use. A research team at the University of Bayreuth has succeeded in producing a material that is far better suited for energy production in fuel cells than natural biofilms. The scientists described the advantages of their new findings in the journal Macromolecular Bioscience.


Bacteria in feed on organic substances such as lactic acid. In this context, electrons are continuously released as part of the metabolic process. As soon as these electrons come into contact with the anode of the , they are transferred to the cathode on the opposite side. This creates an electric current. Until now, when generating electricity in this way, the metallic surface of the anode has generally been colonized by bacteria. The bacteria multiply there, eventually creating a natural and transferring electrons to the anode. The newly developed artificial biofilm from Bayreuth has the same effect, but optimizes this type of in several ways.

ADVERTISEMENT

Bacteria in synthetic nets: more stable than natural biofilms

The material developed by the research group led by Prof. Dr. Ruth Freitag (Process Biotechnology) and Prof. Dr. Andreas Greiner (Macromolecular Chemistry) is a biocomposite: a hydrogel, to be exact. It is a network of tiny polymer fibres containing a single type of bacteria, the metabolisms of which can continue generating power without interruption. However, the amount of power produced is considerably higher: “Our biofilm contains only one type of bacteria, namely Shewanella oneidensis. The electrical performance of a cell with this film is twice as high as when bacteria of this species produce a natural biofilm,” explained Patrick Kaiser (M.Sc.), a doctoral researcher in Bayreuth and one of the authors of the recently published study.

There is also a further advantage to this performance enhancement: energy is produced reliably and predictably, since the concentration of bacteria is determined from the outset in the artificial biofilm. In contrast, natural biofilms are released in a way that is difficult to control, making them less stable. The Bayreuth scientists’ new biocomposite thus makes fuel considerably easier to use.

The biocomposite was produced on the campus of the University of Bayreuth via the electro-spinning of polymer fibres that combine to form a fleece. “Nowadays, electro-spinning of fleece is a widely used technology. No additional production steps are required to embed the bacteria,” added Steffen Reich (M.Sc.), who wrote his doctoral thesis in Bayreuth on the encapsulation of in polymers.


Explore further:
Building a better microbial fuel cell—using paper

More information:
Patrick Kaiser et al. Electrogenic Single-Species Biocomposites as Anodes for Microbial Fuel Cells, Macromolecular Bioscience (2017). DOI: 10.1002/mabi.201600442

Source link

ADVERTISEMENT

ADVERTISEMENT
Just in:
UAE Scrutinizes Report on Racial Discrimination Treaty // Hong Kong Unveils April 30 Launch for Landmark Crypto ETFs // AVPN Charts Path Forward at 2024 Global Conference // Galaxy Macau’s Sakura Cultural Festival Kicked off in Splendor // Lee Chong Wei Shows Up On Chinese Hot cultural Talk Show “SHEDE Wisdom Talents”, Talking About “Crossing The Hill” // NetApp’s 2024 Cloud Complexity Report Reveals AI Disrupt or Die Era Unfolding Globally // CBN Targets User Accounts // Dubai Gears Up for Second FinTech Summit as Funding Surges // PolyU forms global partnership with ZEISS Vision Care to expand impact and accelerate market penetration of patented myopia control technology // Quality HealthCare Partners with eHealth to Enhance Patient Treatment Efficiency // UAE President, Spanish Prime Minister Hold Phone Talks // Etihad Airways Announces Paris Service with A380 // DIFC Courts Cement Role as Top English Dispute Resolution Choice // Cobb’s Game-Changer: Introducing One-Stop Event Transport Management Solution // Central Bank of Nigeria Debunks Rumors of Crypto Account Freeze // Telecom Giant Du Eyes Crypto Integration for FinTech Platform // New Dynamics in Cryptocurrency Security: ZUHYX Builds the Strongest Fund Protection System // Prince Holding Group’s Chen Zhi Scholarship Clinches Silver Stevie for CSR Excellence at Asia-Pacific Stevie Awards // Abu Dhabi Secures US$5 Billion in Fresh Funding // Election Commission Has A Dismal Record On Acting Against Modi’s Breaches Of Poll Code //