Just in:
Global Audience to Witness Thrill of Dubai World Cup // Sharjah Chamber Breaks Ground on Final Expansion with New HQ Pact // German Job Market Resilience Bodes Well for Economic Recovery // US reiterates concern over Kejriwal arrest, Cong accounts // AIA Hong Kong Wins More Than 20 Accolades at MPF Ratings MPF Awards, BENCHMARK MPF of The Year Awards and Bloomberg Businessweek Top Fund Awards // Konica Minolta is named ASEAN 2023 Market Leader in Colour Light and Mid Digital Production Printers // Meta Earth Official Website Launch: The Pioneer Explorer in the Modular Public Blockchain Domain // Lisboeta Macau’s world first LINE FRIENDS PRESENTS CASA DE AMIGO and BROWN & FRIENDS CAFE & BISTRO has officially opened // Arvind Kejriwal Was Used By BJP In 2011 Movement To Take On The Congress // First-Ever Fortune Innovation Forum Draws Top Global Leaders to Hong Kong, Promoting Agendas On Collective Cross-Sector Advancement // U.S. Compliance Takes Center Stage at OKX Following Industry Jitters // No running of govt from jail, says Delhi Lt Governor // Ingdan Announces 2023 Annual Results // Andertoons by Mark Anderson for Thu, 28 Mar 2024 // New Nylon Constant Torque Hinge From Southco Provides Position Control In A Compact Package // Hope for Respite as UAE Endorses UN Plea for Gaza Truce // TUMI Hosts Global Launch Event in Singapore to Unveil Women’s Asra Collection and Announce Global Ambassador, Mun Ka Young // French Leaders Gather for Interfaith Iftar Dinner // Emirates Post Speeds Up Deliveries for GCC with Special Day // Experience Ultimate Shopping Freedom at 4.4 Shopee Spree: Don’t Worry, Shop Shopee! //
HomeTAP ResearchHumans play computer game using only direct brain stimulation

Humans play computer game using only direct brain stimulation

1481173164 humansplayco

Test subjects in a UW experiment navigated simple mazes based solely on inputs delivered to their brains by a magnetic coil placed at the back of the skull, showing how humans can interact with virtual realities via direct brain stimulation. Credit: University of Washington

In the Matrix film series, Keanu Reeves plugs his brain directly into a virtual world that sentient machines have designed to enslave mankind.


The Matrix plot may be dystopian fantasy, but University of Washington researchers have taken a first step in showing how humans can interact with virtual realities via direct stimulation.

ADVERTISEMENT

In a paper published online Nov. 16 in Frontiers in Robotics and AI, they describe the first demonstration of humans playing a simple, two-dimensional computer game using only input from direct brain stimulation—without relying on any usual sensory cues from sight, hearing or touch.

The subjects had to navigate 21 different mazes, with two choices to move forward or down based on whether they sensed a visual stimulation artifact called a phosphene, which are perceived as blobs or bars of light. To signal which direction to move, the researchers generated a phosphene through , a well-known technique that uses a magnetic coil placed near the skull to directly and noninvasively stimulate a specific area of the brain.

ADVERTISEMENT

“The way virtual reality is done these days is through displays, headsets and goggles, but ultimately your brain is what creates your reality,” said senior author Rajesh Rao, UW professor of Computer Science & Engineering and director of the Center for Sensorimotor Neural Engineering.

The video will load shortly

Credit: University of Washington

“The fundamental question we wanted to answer was: Can the brain make use of artificial information that it’s never seen before that is delivered directly to the brain to navigate a or do useful tasks without other ? And the answer is yes.”

The five made the right moves in the mazes 92 percent of the time when they received the input via direct brain stimulation, compared to 15 percent of the time when they lacked that guidance.

The simple game demonstrates one way that novel information from artificial sensors or computer-generated virtual worlds can be successfully encoded and delivered noninvasively to the human brain to solve useful tasks. It employs a technology commonly used in neuroscience to study how the brain works—transcranial magnetic stimulation—to instead convey actionable information to the brain.

The absence or presence of phosphenes – visual artifacts that can be created through direct brain stimulation – told the test subjects whether to move forward or down. Credit: University of Washington

The test subjects also got better at the navigation task over time, suggesting that they were able to learn to better detect the artificial stimuli.

“We’re essentially trying to give humans a sixth sense,” said lead author Darby Losey, a 2016 UW graduate in computer science and neurobiology who now works as a staff researcher for the Institute for Learning & Brain Sciences (I-LABS). “So much effort in this field of neural engineering has focused on decoding information from the brain. We’re interested in how you can encode information into the brain.”

The initial experiment used binary information—whether a phosphene was present or not—to let the game players know whether there was an obstacle in front of them in the maze. In the real world, even that type of simple input could help blind or visually impaired individuals navigate.

Theoretically, any of a variety of sensors on a person’s body—from cameras to infrared, ultrasound, or laser rangefinders—could convey information about what is surrounding or approaching the person in the real world to a direct brain stimulator that gives that person useful input to guide their actions.

The testers successfully navigated an average of 92 percent of the moves when they received input via direct brain stimulation to guide them through the experimental mazes (blue) versus only 15 percent of the steps in the control mazes when they received no such input (red mazes). Credit: University of Washington

“The technology is not there yet—the tool we use to stimulate the brain is a bulky piece of equipment that you wouldn’t carry around with you,” said co-author Andrea Stocco, a UW assistant professor of psychology and I-LABS research scientist. “But eventually we might be able to replace the hardware with something that’s amenable to applications.”

Together with other partners from outside UW, members of the research team have co-founded Neubay, a startup company aimed at commercializing their ideas and introducing neuroscience and artificial intelligence (AI) techniques that could make virtual-reality, gaming and other applications better and more engaging.

The team is currently investigating how altering the intensity and location of direct can create more complex visual and other sensory perceptions which are currently difficult to replicate in augmented or virtual reality.

“We look at this as a very small step toward the grander vision of providing rich sensory input to the brain directly and noninvasively,” said Rao. “Over the long term, this could have profound implications for assisting people with sensory deficits while also paving the way for more realistic experiences.”


Explore further:
Scientists discover how we sense ‘stiffness’

More information:
Darby M. Losey et al. Navigating a 2D Virtual World Using Direct Brain Stimulation, Frontiers in Robotics and AI (2016). DOI: 10.3389/frobt.2016.00072

Source link

ADVERTISEMENT

ADVERTISEMENT
Just in:
Universal Language for Healthcare: General Authority Embraces Global Coding System // AIA Hong Kong Wins More Than 20 Accolades at MPF Ratings MPF Awards, BENCHMARK MPF of The Year Awards and Bloomberg Businessweek Top Fund Awards // TUMI Hosts Global Launch Event in Singapore to Unveil Women’s Asra Collection and Announce Global Ambassador, Mun Ka Young // New Nylon Constant Torque Hinge From Southco Provides Position Control In A Compact Package // Emirati Aid Reaches Ukraine as Food Shortages Bite // Lisboeta Macau’s world first LINE FRIENDS PRESENTS CASA DE AMIGO and BROWN & FRIENDS CAFE & BISTRO has officially opened // Ajman Celebrates Conclusion of Ramadan Activities with Grand Ceremony // Sunshine’s Debut Features Leave Tech World Scratching Its Head // Arvind Kejriwal Was Used By BJP In 2011 Movement To Take On The Congress // Infineon and HD Korea Shipbuilding & Offshore Engineering jointly develop ship electrification technology // Konica Minolta is named ASEAN 2023 Market Leader in Colour Light and Mid Digital Production Printers // U.S. Compliance Takes Center Stage at OKX Following Industry Jitters // German Job Market Resilience Bodes Well for Economic Recovery // Hope for Respite as UAE Endorses UN Plea for Gaza Truce // French Leaders Gather for Interfaith Iftar Dinner // Following the Money Trail: US and UK Investigate $20 Billion in USDT Transfers Tied to Sanctioned Russian Exchange // First-Ever Fortune Innovation Forum Draws Top Global Leaders to Hong Kong, Promoting Agendas On Collective Cross-Sector Advancement // Sharjah Chamber Breaks Ground on Final Expansion with New HQ Pact // Samsung Partners National Heritage Board to Bring a Slice of Singapore’s Cultural Heritage to Samsung The Frame TV // Global Audience to Witness Thrill of Dubai World Cup //